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An effective method for controlling spiral turbulence in spatially extended systems is realized by introducing
a spatially localized inhomogeneity into a two-dimensional system described by the complex Ginzburg-Landau
equation. Our numerical simulations show that with the introduction of the inhomogeneity, a target wave can
be produced, which will sweep all spiral defects out of the boundary of the system. The effects exist in certain
parameter regions where the spiral waves are absolutely unstable. A theoretical explanation is given to reveal
the underlying mechanism.
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I. INTRODUCTION

Controlling deterministic chaos has become an active
field in the study of nonlinear dynamics over the past few
decades. Since the pioneering work of Ott, Grebogi, and
Yorke [1], significant progress[2–5] has been achieved in
controlling chaos in systems with few degrees of freedom.
These efforts have been naturally extended to control spa-
tiotemporal chaos[6] in spatially extended systems, because
the great potential of applications exists in plasma devices
[7], laser systems[8], chemical reactions[9], and biological
systems[10], where both spatial and temporal dependence
need to be considered.

Theories about spatiotemporal chaos have been exten-
sively studied in the complex Ginzburg-Landau equation
(CGLE) system [11], which describes universal dynamics
features of spatially extended systems near a supercritical
Hopf bifurcation. It exhibits defected mediated turbulence or
spiral turbulence in a wide parameter region. The idea behind
the previous attempts to achieve the turbulence control is to
trace and stabilize one previously unstable wave-generating
defect by injecting weak perturbations near the defect core. A
stable spiral wave is thus developed to cover all the uncon-
trolled region along the wave propagation direction. For ex-
ample, Aransonet al. [12] suggested a method of turbulence
control by applying around a unstable defect a localized
feedback injection with a time delay. Zhanget al. [13]
achieved the control by generating a spiral wave seed, and
growing this seed into a stable spiral by injecting a local
periodic signal around it.

In this paper we will propose another method of spiral
turbulence control by introducing a localized inhomogeneity
at a random location in the system described by two-
dimensional(2D) CGLE. A target wave will be produced
around the inhomogeneity. In certain parameter regions the
target wave is stable while spiral waves are absolutely un-
stable, and the target wave drives the spiral turbulence out of
the system. The method is surprisingly simple and highly
efficient.

In the next section, we perform a preliminary analysis of
the CGLE, describe parameter regions where different sta-
bilities have been observed, and report our numerical results
for the turbulence control. In Sec. III, we analyze the reason
why the target wave can be generated, stable, and dominative
when competing with surrounding spatiotemporal chaos. We
give the conclusion of our work in Sec. IV.

II. MODEL AND SIMULATION

The homogeneous CGLE describes spatially extended
media in which the homogeneous state is oscillatory and the
system is near a supercritical Hopf bifurcation. It has the
form

] A

] t
= A − s1 + icduAu2A + s1 + ibd¹2A, s1d

whereb,c are real control parameters,¹2=]2/]x2+]2/]y2,
andAsr ,td is the complex variable. A steadily rotating spiral
solution of Eq.s1d has the general form

Asr ,td = Fsr d exphifsu + csrd − vtgj. s2d

For larger the spiral wave asymptotes to a plane wave with
the wave numberfk=sdc /drdur→`g, which is independent of
r. Substituting the constant amplitude plane wave solution
A=Î1−k2 expsikr − ivtd into Eq. s1d, one can get the fol-
lowing dispersion relation:

v = c + sb − cdk2. s3d

If one ignores the curvature effect, a target wave solution can
be considered as a plane wave solution, so that the dispersion
relation of Eq.s3d is approximately valid to target wave so-
lutions.

In the following discussion we fixb=−1.4. Figure 1 is a
cut of the phase diagram in theb−c−k parameter space. It
shows several regions where the plane-wave solution has dif-
ferent stabilities[11]. The convectively unstable region is
due to Eckhaus instability, where the traveling waves of cer-
tain wave numbers can remain stable in the convective sense,
because the growth rate of a perturbation is smaller than the
traveling speed of the waves; while in the absolutely unstable
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region, the perturbation growth rate becomes larger than the
wave speed. In this case the system will quickly fall into a
state of defect-mediated turbulence. For a spiral wave solu-
tion, the wave numberk is uniquely determined by the pa-
rametersb andc, as shown in Fig. 1. Thus, with a fixed value
b=−1.4, there exist a critical valuec0=0.8 beyond which the
system undergoes the transition from ordered spiral waves to
spiral turbulence. Our study focuses on controlling spiral tur-
bulence in the absolutely unstable region.

In all numerical simulations the space variables are dis-
cretized to 2563256 sites under no-flux boundary condi-
tions. We start with random initial conditions with parameter
c=0.9, which is in the absolutely unstable region, as shown
in Fig. 1. We wait until the state of spiral turbulence is fully
developed; an example of such a state is shown in Fig. 2(a).
Then at control timet=0 we introduce to the system a spa-
tially localized inhomogeneity by changing parameterc from
0.9 to cI =0.6 in the central 535 sites (actually arbitrary
position also works). Figure 2 demonstrates numerical simu-
lations with the spatially localized inhomogeneity. Concen-
tric waves are automatically emitted from the localized inho-
mogeneity att=450 t.u., see Fig. 2(b). The target wave is
stable, and gradually invades into the region where spiral
turbulence previously dominate, see Fig. 2(c). Finally after
t=1500 t.u., the whole system is dominated by one large tar-
get wave and the control is achieved, as shown in Fig. 2(d).
Our simulation results show that forb=−1.4, the target wave
can be generated only whenc−cI ù0.3, otherwise the target
wave cannot be generated in the turbulent sea.

III. ANALYSIS

Several questions are in order. Why can the target wave
be generated? Why is the target wave stable while the system

parameters are in the absolutely unstable region for spiral
waves? And why could the target wave dominate the system
when competing with around spatiotemporal chaos? In this
section we try to answer these questions.

Our numerical simulations show that the target wave is
the result of the introduction of localized inhomogeneity. As
proved by previous experiments[14–16] as well as numeri-
cal simulations of inhomogeneous CGLE[17], the existence
of target waves is attributed to local inhomogeneities which
play the role of pacemakers, changing the local frequency of
the bulk oscillationsv0d [18]. As a result, a target wave with
the same frequency as the pacemakersvTd is generated. The
frequency change in the local area should be large enough to
show the inhomogeneity, which is why in our simulations we
find that the change ofc should be larger than 0.3. The dy-
namics of the target wave is solely determined by the param-
etersc,b, andcI. Inside the introduced small area the system
is in the state of homogeneous oscillation with frequency
vT=cI [19], this determines the frequency of the target wave
outside of the small area where the dispersion relation holds
[see Eq.(3)]. As a result we havecI =c+sb−cdk2, which
gives the wave numberk of the target wave. According to
this argument, the wave number of the target wave that au-
tomatically generated in the system should obey the follow-
ing equation:

k =Îc − vT

c − b
=Îc − cI

c − b
. s4d

As shown in Fig. 3, the results of our numerical simulation
qualitatively confirm this statement. The systematic error in
Fig. 3 is due to the curvature effect of the target wave. In
addition, in the parameter region we focused on, i.e.,b
=−1.4,c.0,cI .0,uvTu,c= uv0u, the frequency of the bulk
oscillation is larger than the asymptotic frequency of the

FIG. 1. Regions with different stabilities in thek−c plane with
b=−1.4. The solid line and dotted line are the onset of absolute
instability and convective instability, respectively. The wave num-
bers of the spiral waves(dark dots) are uniquely decided by the
parametersb andc.

FIG. 2. Numerical simulation of the spatiotemporal chaos con-
trol with a target wave.(a) t=0, while the control starts;(b) t
=450 t.u., the target wave start to grow;(c) t=1000 t.u., the target
wave almost dominates the system;(d) t=1500 t.u., the whole sys-
tem is occupied by a large target wave.
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wave. Thus, the target wave propagates inwardlyf19g.
We now turn to give an explanation to the second ques-

tion according to the discussion presented in the above para-
graph and Eq.(3). We know that with the same parametersb
and c, the value ofk will decrease with the increase of the
value ofv. Thus, if we can increase the frequency of a trav-
eling wave, it is possible to drive the wave number of the
traveling wave from an absolutely unstable region to a con-
vective unstable region(see Fig. 1). According to target
wave solutions, it is easy to change its frequency, because
vT=cI and cI could continuously change in the interval of
f0,c−0.3g. That is the reason why certain target waves can
be stable in the absolutely unstable region for spiral waves.
The wave number of the target wave should be neither too
large nor too small to keep the system behind the onset of
absolute instability, so thatcI should be inside the region
determined by the onset of absolute instability(solid line in
Fig. 1). We display this region in thev−c or cI −c plane in
Fig. 4, where the solid line corresponds to the onset of ab-
solute instability for plane waves, which determines the
minimum and the maximum ofvT. The vertical dashed line
sc=0.8d is the onset of absolute instability for spiral waves;
thus the area defined by the dashed line and the solid line in
Fig. 4 is the region where a target wave could be stable but a
spiral wave is unstable. The dotted line in the middle repre-
sents the existence condition for a target wave, beyond which
target waves cannot be automatically generated by introduc-
ing inhomogeneity in a local region.

The mere fact that the target wave is stable does not nec-
essarily lead to the control of spatiotemporal chaos. To
achieve the control, the target wave should be able to de-
velop, which means that the domain walls between the target
wave and spiral turbulence should move outward, and gradu-
ally the target wave should dominate the whole system. In
the parameter space of CGLE that we are interested, the

movement of domain walls is a result of competition be-
tween antitarget waves and antispiral waves[19]. The re-
quest that the phase of the solution must be continuous
across domain boundaries provides an equation for the ve-
locity of the domain walls[20], which states that, for the
case ofb,c, as we have, the pattern with the lowest fre-
quency will dominate. Spiral wave solutions in an absolutely
unstable parameter region can be regarded as little spiral
seeds with a very short correlation length. The black dots in
Fig. 4 show the frequency of spiral wave solutionsv as a
function of c. We observe a sharp increase at the onset of
spiral turbulence. To have advantages of target waves over
the spiral turbulence,vT or cI must be smaller than the cor-
responding frequency of spiral wave solutions. As a result,
the hatched area in Fig. 4 is the region where the spiral
turbulence can be controlled by introducing an inhomogene-
ity and generating a target wave in the system.cI could con-
tinuously change its value inside the region. Our simulation
results with differentcI are consistent with this analysis.

IV. DISCUSSION AND CONCLUSION

The major advantage of our method of controlling defect-
mediated turbulence or spiral turbulence is that it is simple,
convenient, and highly efficient. There is no need to trace or
lock a certain spiral defect[21]. We only need to introduce a
spatially localized inhomogeneity at an arbitrary position of
the system. The high efficiency is also attractive. We have
tried to increase the system size to 5123512. The change of
the parameter value of the central 535 sites successfully
brings the change of the dynamics behavior of the whole
5123512 region.

FIG. 3. The change of wave numberk of the target waves that
generated in the system as a function of parameterCI. The black
dots represent the simulation results; the solid line is the theoretical
prediction of Eq.(4)

FIG. 4. Phase diagram in thev−c plane. The solid line and
dashed line show the onset of absolute instability for plane waves
and for spiral waves, respectively. The dotted line in the middle
represents the existence condition for target wavecI øc−0.3. The
black dots show the change of spiral wave frequency as a function
of c. A sharp increase occurs at the onset of spiral turbulence. The
hatched area is the region where the control can be achieved.
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Finally, we emphasize that the control scheme can be
readily applied to a reaction-diffusion system. Notice that for
a reaction-diffusion system, the CGLE describes the ampli-
tude equation near the onset of supercritical Hopf bifurca-
tion, which satisfiesu<u0+AsR,Td expsivHTd+c.c, whereu
represents the concentration of a species in the system. Insert
Eq. (2) into the above equation and one hasu−u0
~Fsrd exphifsu+csrdg+svHT/ t−vdtj+c.c. Often (not al-
ways), we havevHT/ t@v. Therefore, in a reaction-diffusion
system we will observe a competition between target waves

and spiral waves which both propagate outward, and the pat-
tern with the highest frequencyswHT/ t−vd will dominate.
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