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Spatiotemporal chaos control with a target wave in the complex Ginzburg-Landau
equation system
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An effective method for controlling spiral turbulence in spatially extended systems is realized by introducing
a spatially localized inhomogeneity into a two-dimensional system described by the complex Ginzburg-Landau
equation. Our numerical simulations show that with the introduction of the inhomogeneity, a target wave can
be produced, which will sweep all spiral defects out of the boundary of the system. The effects exist in certain
parameter regions where the spiral waves are absolutely unstable. A theoretical explanation is given to reveal
the underlying mechanism.
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I. INTRODUCTION In the next section, we perform a preliminary analysis of

Controlling deterministic chaos has become an activdn® CGLE, describe parameter regions where different sta-
field in the study of nonlinear dynamics over the past fewbilities have been observed, and report our numerical results
decades. Since the pioneering work of Ott, Grebogi, andor the turbulence control. In Sec. Ill, we analyze the reason
Yorke [1], significant progres$2—5] has been achieved in Why the target wave can be generated, stable, and dominative
controlling chaos in systems with few degrees of freedomwhen competing with surrounding spatiotemporal chaos. We
These efforts have been naturally extended to control spagive the conclusion of our work in Sec. IV.
tiotemporal chao$6] in spatially extended systems, because
the great potential of applications exists in plasma devices 1. MODEL AND SIMULATION
[71, laser system§8], chemical reaction§d], and biological
systems[10], where both spatial and temporal dependence The homogeneous CGLE describes spatially extended
need to be considered. media in which the homogeneous state is oscillatory and the

Theories about spatiotemporal chaos have been extesystem is near a supercritical Hopf bifurcation. It has the
sively studied in the complex Ginzburg-Landau equationform
(CGLE) system[11], which describes universal dynamics IA
features of spatially extended systems near a supercritical _ . 2 D o2
Hopf bifurcatign. It thibits defec%/ed mediated turbuFI)ence or at A= (L+ic)|APA+ (1 +iD)V°A, @)
spiral turbulence in a wide parameter region. The idea behind o 2o )
the previous attempts to achieve the turbulence control is t§/N€reb.c are real control parameter§?=?/ax*+/ ay?,
trace and stabilize one previously unstable wave-generating’dA(r,t) is the complex variable. A steadily rotating spiral
defect by injecting weak perturbations near the defect core. £olution of Eq.(1) has the general form
stable spir.al wave is thus developed tq cover aI_I the uncon- A(r, 1) = F(r) expli[a8+ y(r) — wt]}. )
trolled region along the wave propagation direction. For ex-
ample, Aransoret al. [12] suggested a method of turbulence For larger the spiral wave asymptotes to a plane wave with
control by applying around a unstable defect a localizedhe wave numbefk=(dy/dr)|, ...], which is independent of
feedback injection with a time delay. Zhareg al. [13] r. Substituting the constant amplitude plane wave solution
achieved the control by generating a spiral wave seed, anti=\1-k? explikr —iwt) into Eq. (1), one can get the fol-
growing this seed into a stable spiral by injecting a locallowing dispersion relation:
periodic signal around it. )

In this paper we will propose another method of spiral w=c+(b-o)k". 3)
turbulence control by introducing a localized inhomogeneity|f one ignores the curvature effect, a target wave solution can
at a random location in the system described by twote considered as a plane wave solution, so that the dispersion

dimensional(2D) CGLE. A target wave will be produced rejation of Eq.(3) is approximately valid to target wave so-
around the inhomogeneity. In certain parameter regions thgtions.

target wave is stable while spiral waves are absolutely un- |n the following discussion we fio=-1.4. Figure 1 is a

stable, and the target wave drives the spiral turbulence out gyt of the phase diagram in the-c—k parameter space. It
the system. The method is surprisingly simple and highlyshows several regions where the plane-wave solution has dif-
efficient. ferent stabilities[11]. The convectively unstable region is
due to Eckhaus instability, where the traveling waves of cer-
tain wave numbers can remain stable in the convective sense,
* Author to whom correspondence should be addressed. Email adbecause the growth rate of a perturbation is smaller than the
dress: gi@pku.edu.cn traveling speed of the waves; while in the absolutely unstable

1539-3755/2004/68)/0562024)/$22.50 69 056202-1 ©2004 The American Physical Society



JIANG et al. PHYSICAL REVIEW E 69, 056202(2004)

10 T T
b=-1.4
absolutely
ungtable
L convectively
k osl . .-unstable - |
._.- .....
stable
00 - - i
0.0 05 1.0 15

c . . . .
FIG. 2. Numerical simulation of the spatiotemporal chaos con-

FIG. 1. Regions with different stabilities in the-c plane with ~ trol with a target wave(a) t=0, while the control starts(b) t
b=-1.4. The solid line and dotted line are the onset of absolute=450 t.u., the target wave start to grofe) t=1000 t.u,, the target
instability and convective instability, respectively. The wave num-Wwave almost dominates the systefu) t=1500 t.u., the whole sys-
bers of the spiral wavegark dot3 are uniquely decided by the tem is occupied by a large target wave.
parameterd andc.

parameters are in the absolutely unstable region for spiral

region, the perturbation growth rate becomes larger than th&aves? And why could the target wave dominate the system
wave speed. In this case the system will quickly fall into awhen competing with around spatiotemporal chaos? In this
state of defect-mediated turbulence. For a spiral wave solusection we try to answer these questions.
tion, the wave numbek is uniquely determined by the pa- ~ Our numerical simulations show that the target wave is
rameters andc, as shown in Fig. 1. Thus, with a fixed value the result of the introduction of localized inhomogeneity. As
b=-1.4, there exist a critical valug=0.8 beyond which the Pproved by previous experimenft4-16 as well as numeri-
system undergoes the transition from ordered spiral waves 2l simulations of inhomogeneous CGIE/], the existence
spiral turbulence. Our study focuses on controlling spiral turOf target waves is attributed to local inhomogeneities which
bulence in the absolutely unstable region. play the role of pacemakers, changing the local frequency of
In all numerical simulations the space variables are disthe bulk oscillation(wp) [18]. As a result, a target wave with
cretized to 256 256 sites under no-flux boundary condi- the same frequency as the pacemédkey is generated. The
tions. We start with random initial conditions with parameterfrequency change in the local area should be large enough to
¢=0.9, which is in the absolutely unstable region, as showrshow the inhomogeneity, which is why in our simulations we
in Fig. 1. We wait until the state of spiral turbulence is fully find that the change af should be larger than 0.3. The dy-
developed; an example of such a state is shown in K. 2 namics of the target wave is solely determined by the param-
Then at control time=0 we introduce to the system a spa- etersc,b, andc,. Inside the introduced small area the system
tially localized inhomogeneity by changing parametérom  is in the state of homogeneous oscillation with frequency
0.9 to ¢;=0.6 in the central X5 sites(actually arbitrary wr=c; [19], this determines the frequency of the target wave
position also works Figure 2 demonstrates numerical simu- outside of the small area where the dispersion relation holds
lations with the spatially localized inhomogeneity. Concen-[see EQ.(3)]. As a result we haves, =c+(b—c)k?, which
tric waves are automatically emitted from the localized inho-gives the wave numbek of the target wave. According to
mogeneity att=450t.u., see Fig. (®). The target wave is this argument, the wave number of the target wave that au-
stable, and gradually invades into the region where spiraiomatically generated in the system should obey the follow-
turbulence previously dominate, see Figc)2 Finally after  ing equation:
t=1500 t.u., the whole system is dominated by one large tar-
get wave and the control is achieved, as shown in Fid). 2 c-wr c-¢
Our simulation results show that foe=-1.4, the target wave k= c-b = b
can be generated only wher-c,=0.3, otherwise the target
wave cannot be generated in the turbulent sea.

(4)

As shown in Fig. 3, the results of our numerical simulation
qualitatively confirm this statement. The systematic error in
Fig. 3 is due to the curvature effect of the target wave. In
addition, in the parameter region we focused on, ite.,
Several questions are in order. Why can the target wave-1.4,¢>0,c,>0,|wr| <c=|wg|, the frequency of the bulk
be generated? Why is the target wave stable while the systenscillation is larger than the asymptotic frequency of the

Ill. ANALYSIS
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FIG. 3. The change of wave numblerof the target waves that FIG. 4. Phase diagram in the-c plane. The solid line and
generated in the system as a function of param@feiThe black  dashed line show the onset of absolute instability for plane waves
dots represent the simulation results; the solid line is the theoreticaind for spiral waves, respectively. The dotted line in the middle

prediction of Eq.(4) represents the existence condition for target wgwec—-0.3. The
. black dots show the change of spiral wave frequency as a function
wave. Thus, the target wave propagates inwafd®]. of c. A sharp increase occurs at the onset of spiral turbulence. The

We now turn to give an explanation to the second queshatched area is the region where the control can be achieved.
tion according to the discussion presented in the above para-

graph ar?d Eq|(3). V1\1/(e k_rlllow that with the iame parametfbrrs] movement of domain walls is a result of competition be-
andc, the value ofk will decrease with the increase of the tween antitarget waves and antispiral way&8]. The re-

\e/ﬁlnuevc\)/;té-rzuii ifo";’giglaentg]%rﬁ\?esetgzengqe”ﬁﬂgbce’fr%Frﬁ]"e’quest that the phase of the solution must be continuous
9 ' P ) across domain boundaries provides an equation for the ve-

traveling wave from an absolutely unstable region t0 a conyyciny of the domain wall20], which states that, for the

vective unstable regiontsee Fig. 1 According to target case ofh<c, as we have, the pattern with the lowest fre-

wave solutions, ilt is easy to clhanr?e its f.requ:er?cy, befalﬁ‘fuency will dominate. Spiral wave solutions in an absolutely
wr=¢ and c,hcoydhcontlnuous th ange In the interval of \hiahle parameter region can be regarded as little spiral
[0,c-0.3]. That is the reason why certain target waves cayeeys with a very short correlation length. The black dots in
be stable in the absolutely unstable region for spiral Wavestig 4 show the frequency of spiral wave solutionsas a
The wave number of the target wave should be neither to@,tion of c. We observe a sharp increase at the onset of
large nor too small to keep the system behind the onset Qdira| turbulence. To have advantages of target waves over
absolute instability, so that, should be inside the region he gpiral turbulencep, or ¢, must be smaller than the cor-
determined by the onset of absolute instabiliplid line in - regponding frequency of spiral wave solutions. As a resul,
Fig. 1). We display this region in the—c or ¢,—c plane in  {he hatched area in Fig. 4 is the region where the spiral
Fig. 4, where the solid line corresponds to the onset of abrhylence can be controlled by introducing an inhomogene-
solute instability for plane waves, which determines theity and generating a target wave in the systeprcould con-

minimum and the maximum abr. The vertical dashed line  in,0usly change its value inside the region. Our simulation
(c=0.8) is the onset of absolute instability for spiral waves; rqgts with different; are consistent with this analysis.
thus the area defined by the dashed line and the solid line in

Fig. 4 is the region where a target wave could be stable but a
spiral wave is unstable. The dotted line in the middle repre-
sents the existence condition for a target wave, beyond which The major advantage of our method of controlling defect-
target waves cannot be automatically generated by introduenediated turbulence or spiral turbulence is that it is simple,
ing inhomogeneity in a local region. convenient, and highly efficient. There is no need to trace or

The mere fact that the target wave is stable does not nedack a certain spiral defe¢21]. We only need to introduce a
essarily lead to the control of spatiotemporal chaos. Taspatially localized inhomogeneity at an arbitrary position of
achieve the control, the target wave should be able to dehe system. The high efficiency is also attractive. We have
velop, which means that the domain walls between the targdtied to increase the system size to %1212. The change of
wave and spiral turbulence should move outward, and graduhe parameter value of the centrak5 sites successfully
ally the target wave should dominate the whole system. Irbrings the change of the dynamics behavior of the whole
the parameter space of CGLE that we are interested, th&l2X 512 region.

IV. DISCUSSION AND CONCLUSION
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Finally, we emphasize that the control scheme can band spiral waves which both propagate outward, and the pat-
readily applied to a reaction-diffusion system. Notice that fortern with the highest frequendy,T/t—w) will dominate.
a reaction-diffusion system, the CGLE describes the ampli-
tude equation near the onset of supercritical Hopf bifurca-
tion, which satisfiesi= uy+A(R, T) expliowyT) +c.c, whereu
represents the concentration of a species in the system. InsertWe thank H.L Wang for helpful discussions. This work
Eg. (2) into the above equation and one has-u, was partly supported by grants from the Chinese Natural
oo F(r) expli[o0+¢(r)]+(wyT/t-w)t}+c.c. Often (not al-  Science Foundation, Department of Science of Technology
ways), we havewyT/t> w. Therefore, in a reaction-diffusion in China, and the Chun-Tsung Foundation at Peking Univer-
system we will observe a competition between target wavesity.
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